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Strategic Cyber Effects in 
Complex Systems:
Understanding the US Air 
Transportation Sector

Abstract: US policy-makers have coalesced around the need to develop a risk-
based approach for managing strategic effects of cyber attacks. This paper uses 
graph networks of US air infrastructures from the Department of Transportation to 
develop the Strategic Disruption Index (SDI), a means to assess the loss of effective 
transportation network capacity of passengers resulting from various cyber attack 
scenarios. Dynamic effects are measured using an agent based model to assess the 
ensuing propagating air passenger delays. Results from this analysis show strategic 
effects are influenced by airport and airline network structure and induce dynamic 
effects across the entire sector. We find that the largest national strategic effects are 
generated through the disruption of key vendor relationships that can potentially 
affect multiple private operators simultaneously. Policy-makers who are charged with 
developing means of measuring national risk can apply this approach to evaluate 
strategic impacts to any number of domestic or international transportation networks. 
They can also use the approach to compare impacts between disparate infrastructure 
networks to prioritize resources that best limit the range of strategic risk. 
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1. INTRODUCTION

Governments have increasingly focused on the range of strategic impacts cyber 
attacks can generate, including significant disruptions to critical infrastructure. US 
policy-makers have sought to adopt risk-based approaches to cybersecurity to promote 
resilience in critical infrastructure but have struggled with ways to quantify risk. The 
Department of Homeland Security notes, “We lack integrated and scalable adoption 
and application of systemic risk assessment, resulting in ineffective and uncoordinated 
application of resources for cybersecurity” [1]. This challenge arises in part from the 
inability to assess strategic impact across many independent but related organizations 
that support critical public services [2]. The Cyber and Infrastructure Security Agency 
(CISA) has defined several National Critical Functions (NCF) – key strategic services 
where a cyber attack could generate a significant public concern. These include the 
movement of air passengers. We address two key questions in this paper. First, how do 
you quantify the strategic effects of a cyber attack on airports, airlines, or key vendors 
that disrupt portions of the passenger air network? Second, which events generate the 
greatest concern for national operators and policy-makers? To answer these questions, 
we explore effective capacity loss in passenger transport networks and the resulting 
propagation delay for connecting flights in US air infrastructure as a measure of 
strategic impact. The approach discussed in this paper contributes to the literature on 
strategic effects of cyber attack to air transport systems specifically and provides a 
means of calculating strategic impact on critical infrastructure more generally. 

Disruptions at Delta in 2016, United Airlines in 2017, and Southwest in 2019 have 
highlighted the growing impact IT failure can have across air networks [3]. While most 
disruptive events against air infrastructure are a result of unintended consequences 
of ill-timed application rollouts, a small number of incidents have resulted from 
malicious actors who have succeeded in disrupting air operations through attacks on 
proprietary systems at airlines or by attacking airport infrastructure directly. Attacks on 
RavnAir in 2019 [4], Polish national carrier LOT in 2015 [5], and Russian attacks on 
Swedish [6] and Ukrainian airport infrastructure highlight the potential for malicious 
disruptive activity [7]. In this paper, we assume that cyber attacks disrupt systems 
that are key to transportation of passengers by aircraft. Examples of these types of 
attacks include disabling of tower communications systems, air passenger booking 
software, or aircraft weighing systems. The specific technical details of the cyber 
attack, such as the deployment of a ransomware variant, a specific exploit used, or 
different persistence mechanisms, is not dealt with specifically, as policy-makers are 
more interested in the operational effects than in the technical details of the malware. 
However, some techniques are more likely to occur than others, and their probability 
of occurrence can be paired with the results from this analysis to generate a measure 
of cyber risk. 
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Data from the 2019 US Department of Transportation air carrier statistics are used 
to construct national graph models of air transportation and regional graphs aligned 
with the Federal Emergency Management Agency (FEMA)’s response zones. While 
cyber-induced disruption to US air infrastructure would no doubt create impacts to 
international flights, we do not explicitly address the effects in this analysis. However, 
the approach discussed could be applied to international air passenger networks. To 
assess the loss of effective transport network capacity, we introduce the Strategic 
Disruption Index (SDI) to measure the weighted capacity loss the disruption would 
represent on air networks. Finally, we assess the dynamic   propagation delay of 
aircraft and the impacts they would have on connecting flights. Our key findings 
suggest that the largest strategic effects on the national air network would result 
from attacks on airline infrastructure and are most concerning when involving the 
disruption of common-use third-party vendors. Such attacks would substantially 
reduce air transport capacity at several airports simultaneously, generating substantial 
delays across the graph structure. This finding suggests that the cyber security of key 
vendors or operators in air transportation remains a greater strategic vulnerability to 
local and national air infrastructure. It also suggests, though, that this relationship 
likely exists in other infrastructures as well. 

2. LITERATURE ON CYBER EFFECTS, ATTACKS ON 
NETWORK STRUCTURE, AND PROPAGATION DELAY

Scholars have attempted to categorize and measure the range of cyber impacts, 
including estimates of the categories of harm [8, 9] and organizational impact [10], but 
generally have not linked together the primary (technical), secondary (organization), 
and second-order (society) effects that bind the actions of a threat actor on a specific 
device to the cascading impacts on society [11, 12]. Several studies have looked at 
impacts to critical infrastructures, including the electrical grid [13], water distribution 
[14], and even transportation [15], yet tend to narrowly focus on defining specific 
technical vulnerabilities tied to the provision of the service, not on quantifying the 
capacity loss or delay to provisioning of the service on society. Dieye et al. [16] 
and Santos et al. [17] come closest in their analysis of macroeconomic linkages but 
focus their approach on output loss and price changes as a result of the disruption 
to ports. Their analysis does not measure changes in the capacity of the transport 
network holistically or     to assess the delay propagation stemming from attacks on 
the organizational network infrastructure of the entire sector. 

The estimation and description of network structures have been broadly explored in 
critical transport infrastructures [18]. Exploration of airline routes [19], roads [19, 
20], railways [21], and river networks [21, 22] detail the structure of linkage but do 
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not themselves explore disruptive impacts as a result of cyber attacks on the network 
structure specifically. Amaral et al. [19] explore the structure of large national airport 
networks, highlighting their scale-free structure, but do not seek to quantify the 
impact to flight operations from either natural or man-made disruptions. Other efforts 
to estimate the impact of vertex removal, specifically in internet structures, note the 
resilience of scale-free network structures to single vertex removal [23, 24]. However, 
when it comes to the estimation of disruption to transport and critical infrastructure 
capacities resulting from cyber attack, there appears to be a gap in the literature. 

Disruption to air network infrastructure not only impacts the effective capacity of air 
networks but can propagate delay. Wu et al. [25] found that delays can be propagated 
due to reasons such as airport congestion, resource limitations, or even through 
connecting-flight delays. Wu et al. also noted that at least one airline in China had 
nearly 50% of its sequence flights suffering from such effects. Beatty et al. [26] 
came up with the concept of a delay multiplier to capture the amplification of an 
initial delayed flight through the day, estimating that the flight delay cost was more 
than 30 billion dollars every year. Other studies have found a range of flight delay 
propagation due to the increasing demand burden on the air transportation systems 
[27, 28, 29]. Modeling failure or disruption of critical infrastructure due to a natural 
or malicious act is generally well studied but is limited in both the specific exploration 
of transport infrastructure and in the use of graph- or agent-based techniques to assess 
the consequences of capacity loss across sectors. While there exist several studies 
looking at the disruption to specific critical infrastructure sectors utilizing system 
dynamics, agent-based, network, input-output, or high-level architecture models, only 
a single paper was identified that examined the disruption to the transportation sector 
[30]; and that study sought only to estimate the change in passenger   demand in case 
of a physical attack on the US air infrastructure utilizing an input-output model. In 
this context our analysis contributes to the literature in two significant ways. First, our 
use of both a graph and an agent-based model are novel, providing both an approach 
to estimating capacity loss and propagation impacts in air transport. Second, the 
introduction of an index to measure effective capacity loss enables policy-makers to 
compare the impact of a range of cyber events more easily across any air network, and 
even serves as a means for measuring impacts across sectors.

3. MEASURING EFFECTIVE NETWORK CAPACITY 
LOSS IN AIR TRANSPORTATION

We measure effective capacity loss in an air network by imagining a set of airports as 
vertices connected by edges (flights) which ferry passengers between locations and 
where the loss of any airport or flight creates a loss in transport capacity (Figure 1). 
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Let us assume a weighted graph (G) below with the set of vertices (V={ν1,ν2,…,νn}),
edge pairings (E), and where W is a matrix of edge weights (w i,j), where row i 
represents the individual vertices in G columns j equal the edge pairings between a 
specific vertex in row i and all other vertices in the graph, and whose value is equal to 
the number of passengers. For example in Figure 1, w 1,2 and w 2,1 are equal to 5 while 
w 1,3 and w 3,1 are 0 as there is no connection between ν1 and v3. Cyber events can have 
different impacts on services that support flight operations at an airport (Tνi). These 
effects can range from slight delays to those that completely incapacitate operations 
(i.e.0 ≤ Tνi ≤ 1). Examples might include a ransomware attack that disables tower 
communication systems (Tνi = 1), a spear-phishing event that only compromises data, 
(Tνi = 0), or a sustained DDoS event that degrades operations (Tνi = 0.3). 

To estimate an effective capacity loss of one or more airport vertices in the graph, we 
sum across all vertices in the graph, the operational effect of the attack per vertex (Tνi), 
and multiply it by the sum of both the impact of the positional importance in the graph, 
measured by the eigenvector centrality of the vertex impacted by the cyber attack (Cνi

e ) 
over the sum of all the vertices’ eigenvector centralities, and the volume of passengers 
traversing the affected vertex to other vertices divided by the sum of all passengers 
through the air network. Tuning parameters for both the positional importance (α) of 
the vertex as well as the volume of passengers the vertex supports (β) are included. 

Therefore, for any graph G we can measure the Strategic Disruption Index (SDI) 
between 0 and 1:

FIGURE 1. A REPRESENTATIVE GRAPH (G) OF VERTICES AND EDGES.

Where: α + β = 1
0 ≤ Tνi ≤ 1



6

For example, if we wanted to calculate the SDI for a ransomware attack on vertex 
ν3 tower communications (Tν3 = 1), we would take into account ν3’s calculated 
eigenvector centrality (1) divided by the sum of all centralities in the graph (4.28) 
and the sum of edge weights connected to it (40) over the sum all edge weights (61). 
Assuming α and β are both equal to 0.5 (e.g., both factors are of equal importance), we 
can calculate an SDI of 0.45, indicating that the attack generated an effective capacity 
loss in this graph of 0.45 or 45% of its weighted capacity. Conversely, the same attack 
on ν1 would only generate an SDI of 0.08, or 8% of the effective weighted capacity of 
the entire air network. In this manner, we can use the SDI to differentiate the capacity 
loss across a range of airports, airlines, or supporting vendors for any number of cyber 
scenarios. 

4. CONSTRUCTING AIR NETWORKS

We utilize year 2019 US Department of Transportation air carrier statistics to build 
graphs of airports and flight connections. Figure 2 highlights a national graph, with 
the top 10 airport codes identified by passenger volume and eigenvector centrality. We 
identified 374 airports with 5,481 connections that moved at least 1,000 passengers 
a month (Table I). The national air infrastructure can be described as a scale-free 
network with a few highly interconnected airports that stitch smaller regional locations 
together into a single air infrastructure. This follows a similar pattern found by Amaral 
et al. [19], with the degree distribution following a power law distribution.

FIGURE 2. GRAPH OF NATIONAL AIR TRANSPORT NETWORK. 
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To assess the regional effects of disruption to air infrastructure, we divide the national 
air infrastructure into the 10 different Federal Emergency Management Agency 
(FEMA) regions (Figure 3). These regional graphs consist only of flights beginning 
and ending in the same region. Intra-regional networks vary not only in the number 
of vertices and passenger volume but also in structure. For example, FEMA Region 1 
has relatively few airports (6) with an average degree centrality of 1.33, implying that 
most airports have few interconnections and that their structure is likely considerably 
different from other regions such as 4 and 9 that maintain both more vertices (61, 42) 
and greater average degree centrality (6.67, 6.79). 

FIGURE 3. FEMA REGIONS. 

Figure 4 highlights two of the graph structures, demonstrating that there is a larger 
set of interconnections in Region 9 than in Region 1. We find that this diversity of 
network structure generates substantial differences in both the regional capacity loss 
and delay propagation effects from the disruption to either airport operations or airline 
infrastructure.

FIGURE 4. INTRA-REGIONAL AIR NETWORKS.

FEMA Region 1
(With at Least 1,000 Passengers Between Airports)

FEMA Region 9
(With at Least 1,000 Passengers Between Airports)
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The differences in regional structures found in Table I, including in average degree, 
numbers of vertices, and edge connections, reflect the differences in geography and 
physical distance found in different parts of the country and which we find to drive 
differences in effective capacity loss and flight delay propagation. 

TABLE I. AIR NETWORK DESCRIPTIVE STATISTICS.

5. ESTIMATING LOSS OF EFFECTIVE NETWORK 
CAPACITY IN US AIR INFRASTRUCTURE

Disruption to airport flight operations, including jetway functions, air traffic 
management systems, or even booking management systems, can have strategic 
impacts on the entire sector [32]. Using the SDI approach, our analysis shows that 
only a few well-connected airports (Table II) with large traffic volume generate the 
heaviest impacts; many small and regional airports have little overall impact on the 
national air network. These results broadly correlate with the scale-free structure of 
the national air network and confirm the experience of any air traveler who has been 
delayed when a weather event shuts down a major airport. For example, a cyber event 
that shuts down   Hartsfield-Jackson Atlanta International Airport (ATL) generates 
an SDI of 0.04, or roughly 4% of the effective capacity of the national air transport 
system. Disruption at other major hubs, such as ORD, DEN, or DFW, induces similar 

Nodes Edges Diameter Modularity Avg. Degree

FEMA 1 6 8 3 0.32 1.33

FEMA 2 16 44 4 0.32 2.75

FEMA 3 17 54 3 0.21 3.18

FEMA 4 61 407 5 0.22 6.67

FEMA 5 45 181 3 0.18 4.02

FEMA 6 11 192 3 0.24 4.36

FEMA 7 5 8 2 0 1.60

FEMA 8 37 97 3 0.20 2.62

FEMA 9 42 285 3 0.18 6.79

FEMA 10 36 100 5 0.34 2.78

National 374 5481 7 0.25 14.66
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impacts to effective network capacity loss, whereas the loss of air operations at 
smaller airports such as in Boise Idaho represents less than 0.1% loss in effective 
national network capacity. 

TABLE II. NATIONAL SDI BY AIRPORT.

Regional effects are also calculated utilizing each region’s specific graph structure 
to estimate an SDI value. We find that while national SDI values remain largely 
consistent (at between 0.02 and 0.04) among the largest airports, disruption to the 
most important airports in each region can vary substantially (Table III). For example, 
in Region 9, which includes much of California, Arizona, and Nevada, the loss of 
LAX would constitute a 10% loss of the effective air capacity in the region. By 
contrast, the loss of St. Louis Lambert International Airport would   be 42% of the 
regional network capacity. Similarly, an attack on Boston’s Logan International would 
represent a loss of   30% of the regional network capacity.

Airport Strategic Disruption Index (SDI)

Hartsfield-Jackson Atlanta International (ATL) 0.04

O’Hare International (ORD) 0.03

Denver International (DEN) 0.03

Dallas/Ft. Worth International (DFW) 0.03

Los Angeles International (LAX) 0.03

Las Vegas McCarran International (LAS) 0.02

Charlotte Douglas International (CLT) 0.02

Seattle-Tacoma International (SEA) 0.02

Phoenix Sky Harbor International (PHX) 0.02

Orlando International (MCO) 0.02
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TABLE III. REGIONAL AND NATIONAL SDI BY MOST AFFECTED AIRPORT IN FEMA REGION.

The range of values indicates that different network structures lead to substantial 
differences in impact. In some cases, where airports remain at the center of a regional 
hub-and-spoke network structure (e.g., Regions 1 and 3), the disruption of airport 
operations at a single location can generate impacts far exceeding that airport’s 
influence in the national air infrastructure. This is primarily due to the small number 
of   airports that are servicing regional flights and are highly reliant on a major airport 
(e.g., Boston’s Logan International Airport). As seen in Figure 2, the network structure 
of Region 1 is tightly connected through a single vertex (BOS), yet Region 9 has 
more highly connected vertices limiting regional effective capacity loss from a single 
airport disruption. 

How would attacks on airline infrastructure, including their vendor systems,   compare 
with attacks on airports? Disruptions to some specific airline systems (e.g., disabling 
the ability to file a flight plan) can lead to the grounding of the entire air fleet across 
all airports they serve. In some cases, airlines provide much of the capacity at many 
airports, and thus attacks on them would disrupt large percentages of air capacity 
simultaneously across regions. Recent events at Delta in 2016, United Airlines in 
2017, and Southwest in 2019 are representative.   We find that attacks on an airline’s 
air network    generate significantly larger national effects (Table IV) than do attacks 
on a specific airport. 

FEMA Region Top Disrupted Airport Regional SDI National SDI

1 Boston Logan International (BOS) 0.30 0.02

2 New York International (JFK) 0.20 0.01

3 Philadelphia International (PHL) 0.20 0.02

4 Hartsfield-Jackson International (ATL) 0.17 0.04

5 O’Hare International (ORD) 0.17 0.03

6 Dallas/Ft. Worth International (DFW) 0.16 0.03

7 St. Louis Lambert International (STL) 0.42 0.01

8 Denver International (DEN) 0.26 0.03

9 Los Angeles International (LAX) 0.10 0.03

10 Seattle-Tacoma International (SEA) 0.23 0.03
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TABLE IV. NATIONAL SDI BY AIRLINE.

The loss of capacity across potentially hundreds of air corridors simultaneously 
generates SDI values that are more than twice the impact of the largest and most 
central   airports (such as ATL). This supports a general observation from scholars 
who highlight the resilience of scale-free network structures from the loss of a single 
vertex but remain largely vulnerable to attacks on many highly connected nodes 
simultaneously [23]. For example, an attack against Southwest Airlines generates a 
10% loss of effective network capacity across the United States, more than twice what 
was achieved in disrupting Atlanta’s Hartsfield-Jackson International. 

As airlines frequently manage operations using integrated services from third-party 
vendors, the loss of a single vendor’s service can exacerbate the problem. Airlines that 
utilize the same vendor to provide critical services as part of their broad operations 
open the potential for a single third party to cause disruption to ground flights across 
multiple airlines simultaneously. For example, AeroData, a privately owned company 
providing flight inspection systems, suffered a system disruption in 2019 that forced 
major carriers United, Delta, Southwest, JetBlue and Alaskan Airlines to cancel more 
than 7,000 flights throughout the day [31, 32]. The outage, while only lasting 40 
minutes, would score a collective SDI value of 0.36, representing a capacity loss nine 
times greater than the loss of ATL operations. With national carriers responsible for 
the largest percentage of flights between major airports, the disruption of common 
vendor systems essential to flight operations presents the largest strategic impact to 
the effective network capacity of US air infrastructure. This type of attack highlights 
the challenge to scale-free network structures that, while resilient to the removal of 

Airline Market Value Vertices Edges Strategic Disruption 
Index (SDI)

Southwest $126.45B 127 2505 0.10

Delta $130.25B 215 3072 0.08

American Airlines $131.59B 158 1953 0.08

United $111.28B 181 2021 0.06

SkyWest $21.39B 280 4084 0.02

Jet Blue $41.44B 94 810 0.02

Alaska Airlines $47.48B 114 771 0.02

Frontier $22.57B 105 768 0.01

Hawaiian $12.28B 30 104 0.01
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a single vertex, generate substantial impacts when several   highly connected nodes 
are disrupted simultaneously. The use of a handful of key service vendors raises the 
possibility of single points of failure with the potential for widespread national air 
disruption extending far beyond the loss of flight operations at a single airport or 
airline. 

6. MODELING PROPAGATION DELAYS

Disruption to air capacity also has the potential to propagate impacts through the 
entire air network. To measure this dynamic effect, we use an agent model leveraging 
flight-time information obtained from the Airline On-Time Performance Database, 
distributed by the Bureau of Transportation Statistics. Simulations are done in Python, 
with delays propagated to downstream flights using random sampling through Monte 
Carlo methods. While the SDI quantifies the weighted loss of an initial disruption 
on passenger air network capacity, our delay propagation captures the ensuing 
propagation of delays on the impending air flight network. 

We define the propagation parameter, ɑ, as the fraction of flights impacted by an initial 
delayed flight of the same airline, within a fixed-time interval (tdur) from the scheduled 
time of arrival at the arrival airport. The agent-based algorithm is as follows: 

1) x0 flights are initially delayed from a cyber attack 
2) Each of the x0 delayed flights impacts a fraction ɑ of flights from the 

same airline within a certain time tdur at the airport from which the flight is 
scheduled for departure 

3) Each of the subsequently delayed flights also causes delays at the 
corresponding airport at which they are scheduled to land, further propagating 
delays according to Rule 2, resulting in a cascade of delays through the day.

Previous work [29] found that ɑ of between 0.02 (or 2% of downstream flights 
impacted by an initial delayed flight) and 0.25 (25% of downstream flights impacted by 
an initial delayed flight) reproduced clusters of propagating delayed flights in regular 
operating conditions. The higher ɑ values reflected times in which there were more 
passengers leading to fewer buffers in the airline networks, such as during the holiday 
season. In our analysis we vary ɑ as 0.02 or 0.25 and choose a fixed tdur = 1 hour. 
For example, ɑ = 0.25 would mean that a delayed Delta flight that was supposed 
to land at   13:00 in Atlanta would impact 25% of subsequent Delta flights that are 
supposed to depart between 13:00 and 14:00. That delay would continue propagating 
across the Delta air network until the end of the day. 
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Figure 5 shows the cascading disruption in a scenario when   an airport is shut down 
for an hour from 8:00–9:00 EST. Diagrams (a), (b), and (c) correspond to a disruption 
of the Atlanta Hartsfield-Jackson International Airport, at 9:00, 13:00, and 17:00 EST, 
respectively. Diagrams (d), (e), and (f) correspond to disruption of the Los Angeles 
International Airport during the same times as Diagrams (a), (b), and (c). The colors 
are a heatmap indicating the number of flights disrupted over the course of the day. 
Regions with greater disruption have more intense red colors, whereas regions of less 
disruption are colored blue. An attack on ATL airport propagates from East to West, 
whereas an attack that originates in LAX propagates from West to East.

FIGURE 5. AIRPORT CYBER ATTACK CASCADING DELAY SCENARIO ANALYSIS. DURATION OF 
THE ATTACK: 8:00–9:00 EST ON DECEMBER 1, 2019. TOP: ATL AIRPORT. BOTTOM: LAX AIRPORT.

Figure 6 denotes the total fraction of delayed flights by the end of the day. Symbols 
denote attacks at 8:00-9:00 that impact the 10 most important airports in their respective 
FEMA region. Red lines are error bars from multiple simulations with the same ɑ. The 
dashed black line is slope = 1, or national disruption = regional disruption. The low 
delay multiplier (ɑ = 0.02) shows lower delay effects as compared to the larger delay 
multiplier (ɑ = 0.25). Thus the propagation multiplier (ɑ) acts as a “tuning” parameter 
to probe varying levels of cascade impacts. 
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FIGURE 6. EFFECTS OF DELAY MULTIPLIER ON FLIGHT DISRUPTION CASCADE. 
(a) ɑ = 0.02. (b) ɑ = 0.25.

A smaller delay propagation parameter (ɑ = 0.02) is associated with limited initial 
disruption between 8:00–9:00 EST, with hardly any cascade. Most airport disruptions 
are above the dashed line, showing that they cause larger regional disruptions than 
national ones. STL, BOS, and LGA are under the dashed line. STL and BOS cause 
little to no regional disruption due to the lack of intra-regional flights by major airlines 
in FEMA Regions 1 (no regional flights on December 1) or 7 (13 regional flights on 
December 1), whose flights are well distributed through the day. By contrast, FEMA 
Region 3’s reliance on larger carriers is significantly impacted by the disruption of 
PHL, creating the largest regional delay disruption. This is likely due to the large 
presence of American Airlines in FEMA Region 3. It should be noted that the Airline 
On-Time Performance Database does not contain information on small regional 
carriers, which might lead to the underestimation of delay propagations in regions 
that are have a larger dependence on small regional carriers, such as FEMA Region 1. 
National delay impacts largely align with the large hubs, with ATL, ORD, and DFW 
accounting for the largest national disruptions. 

Larger delay parameters (ɑ = 0.25) are associated with larger downstream propagation. 
PHL, ATL, and ORD generated the largest regional disruptions; ORD, DFW, and 
LGA generated the largest national disruptions; and West Coast airports DEN, 
LAX, and SEA saw smaller disruptions, likely due to the early hour of the event 
(e.g., 6:00 MST/5:00 PST). Changes in the timing of an attack appear to also induce 
differences in national and regional delay propagation. In Figure 7b, we see an overall 
shift of disruption to lower national impacts when the cyber attack is later in the 
day, as the originating delay has less time to propagate to other connections during 
the day. However, cyber attacks on West Coast airports, including DEN, LAX, and 
SEA, respectively, lead to larger disruptions when the attack originates later in the 
day. Cascading delay disruptions are found to be sensitive to both geographical and 
temporal variations. 

(a) (b)
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FIGURE 7. TIME OF DAY IMPACT ON CASCADE. (A) DELAY CASCADE IN A SCENARIO WHERE THE 
RESPECTIVE AIRPORTS ARE DISRUPTED FROM 12:00-13:00 EST. (B) RELATIVE DISRUPTION IN A 
12:00-13:00 SHUTDOWN VS. 8:00-9:00 SHUTDOWN.

Attacks on airline infrastructure also cause delays, as   aircraft are unable to make 
connections when proprietary systems do not allow for normal flight operations.   We 
study a scenario in which flights are disrupted on December 1, 2019, corresponding to 
the five largest carriers by flight volume: American (AA), Delta (DL), United (UA), 
Southwest (WN), and Alaskan (AS) Airlines, respectively. We find that the five largest 
airline network structures vary   in the level of both national disruption and regional 
impacts corresponding to the locations of its hub operations. Figure 8 highlights both 
the national and regional propagation delays across the five largest carriers. In the most 
extreme case, an attack that disables operations at Alaskan Airlines impacts almost 
exclusively a single region (Region 10). Figure 9 highlights the range of national and 
regional effects to compare the impacts of airline shutdowns, plotting the fraction of 
flights. Here the numbers for the air carriers correspond to the FEMA region that is 
most impacted (in terms of the fraction of delayed flights). For example, during a DL 
shutdown from 12:00-13:00, 15% of flights are delayed across the country through 
the day, and in FEMA Region 4, 30% of flights are delayed. In general, we find that, 
similarly to the analysis of effective capacity loss, delay disruptions from attacks on 
airline carriers are larger than those from attacks on airports.

(a) (b)
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FIGURE 8. IMPACTS OF AIRLINE SHUTDOWNS FROM 12:00-13:00 ON DECEMBER 1, 2019. LEFT: 
PERCENTAGE OF TOTAL FLIGHTS DELAYED CASCADING THROUGH THE DAY NATIONALLY AND 
BY FEMA REGION (AS INDICATED IN THE LEGEND). RIGHT: SNAPSHOTS OF DELAY AT THE END 
OF THE DAY.



17

FIGURE 9. FRACTION OF FLIGHTS IMPACTED NATIONALLY AND BY MAXIMALLY IMPACTED 
REGION, CORRESPONDING.

Additionally, the four regions that endure the largest disruptions from airline attacks 
are the same four regions that have the biggest disruptions as a result of airport attack 
(Regions 3, 4, 8, and 10). FEMA regions are particularly susceptible to strategic effects 
due to the combination of regional reliance on the dominant airport and the same 
airport being the hub of a large national carrier. Regions where carrier hub airports are 
located are more vulnerable to cascading delays that originate either from carrier or 
airport shutdown, due to the interdependencies between airport and carrier network 
structures. By contrast, national impacts are not dependent on the structure of airline 
networks, due to the national redundancy of airline hubs in multiple airports across 
regions. While we assumed a uniform delay propagation factor (ɑ = 0.25) across 
airline networks, studies have indicated that certain point-to-point carriers have lower 
risks for cascading delays [33, 34]. 

7 CONCLUSION

The growing threat of attacks against critical infrastructure is an enduring concern 
among national policy-makers. Key to managing the risk of these threats is the 
ability to effectively measure the strategic effect a cyber attack has on the series of 
interconnected organizations. Organizational dependencies, including third-party 
vendors, can create disparate and complex impacts to capacity and delay propagation. 
These complex sets of interdependencies challenge the ability of policy-makers to 
effectively prioritize defensive resources. 

National disruptive effects propagated primarily through airlines highlight the potential 
for substantial impacts through the degradation of third-party vendors who provide 
service across multiple airlines. The combination of capacity loss and propagation 
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delay across major hubs simultaneously serves as an effective attack on the scale-
free structure of the national air infrastructure. While operators utilize these vendors 
to take advantage of efficiencies, they add critical vulnerabilities to the whole of the 
transport sector. Attacks on a single operational system (e.g., passenger booking) 
have the potential to disrupt air infrastructure more than attacks on entire airports. 
Threats to vendors who provide for terminal management, passenger facilitation, 
airside operations, and information management all represent avenues of strategic 
disruption not presently accounted for in the effects literature. Decisions regarding 
design, development, and deployment of key flight operational systems, all made by 
private actors, can generate substantial public risk. 

Policy-makers should examine the role that service providers play to better assess 
the risk these services present to US air infrastructure. For example, the temporary 
disabling of the   AeroData service highlights how the tight coupling of vendors with 
essential flight operations by airlines creates the potential for pervasive and highly 
disruptive impacts. The disruption to flight operations generated an effective capacity 
loss, albeit for 40 minutes, of over 36% (SDI = 0.36) of the nation’s capacity with a 
200–300% increase in flight delays (Figure 10). Russian dispersal of the NotPeyta 
ransomware through M.E.DoC software in Ukraine and, more recently, the attack 
on Solarwinds further highlights the strategic risk to organizations using third-party 
vendors. 

FIGURE 10. CASCADING DELAYS ON APRIL 1, 2019 DUE TO THE AERODATA SERVICE OUTAGE 
WHICH IMPACTED MULTIPLE AIRLINES, COMPARED WITH DELAYS DURING THE FOLLOWING 
DAYS.

Significant regional effects on effective network capacity can also occur if specific 
airport or airline infrastructure is targeted. In some cases, regional networks have 
concentrated connections in a few airports, leading to substantial disruption to 
regional flights when a single airport is made inoperable. Regions with greater 
numbers of connected airports maintain greater resilience in their air sector, whereas 
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regions with a dominant metropolitan area (e.g., Boston) will be more susceptible 
to regional disruption from the loss of a single airport or large airline servicing 
intraregional flights. Furthermore, disruption to low-resiliency airport infrastructure 
or to airline capacity heavily concentrated in those locations can lead to substantial 
regional delay propagation in addition to the significant loss of effective capacity. 
Estimations of risk at the state and local level might vary, given this difference from 
the national results; these variations highlight the general degree of nuance one needs 
to employ when estimating the collective impact to effective network capacity. While 
several qualitative [35, 36] and quantitative studies [37] explore interconnected 
vulnerabilities in critical infrastructure, the complexity of interdependence creates 
substantial challenges to measuring strategic impacts [38]. The approach explored in 
this paper expands on prior efforts to create a more extensible method for comparing 
strategic effects between sectors. 

Our framework complements existing approaches through the combination of 
network analysis and computing network flows. The advantages of this approach 
are the relative ease and adaptability to various other infrastructures, such as other 
transportation networks, power supply networks, and water networks. For example, 
the 2003 Northeastern blackout features a short-time cascade, which can be modeled 
using a similar approach. 

A risk-based approach to cyber security defense is at the heart of the US public efforts 
to promote resilience in critical infrastructure. While both the US 2018 National 
Cybersecurity and relevant executive action define and promote defense of the nation’s 
16 critical infrastructures as an essential element of the defensive strategy, the ability 
to quantify the range of strategic effect remains an ongoing challenge in the field. 
Policy-makers who are charged with developing means of measuring national risk can 
apply the approach in this paper to assess the interdependence of organizations and 
prioritize resources to best limit the range of strategic risk to any number of critical 
infrastructures. 
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